\( \def\udiff#1#2{{#1}^{\left(#2\right)}} \def\stabs#1#2#3{{#1}^{#2,#2}\left(#3\right)} \def\etaf#1#2{\eta_{#1}(#2)} \def\tfreqa{\class{param}{\omega}} \def\tfreqah{\tfreqa h} \def\nfreqa{\tfreqa_h} \def\nfreqsqa{\Omega_h} \def\tfreqb{\class{param}{\mu}} \def\tfreqbh{\class{param}{\tfreqa h}} \def\nfreqb{\class{param}{\tfreqa_h}} \def\nfreqsqb{\Mu_h} \def\tfreqTE{\class{param}{\lambda}} \def\nfreqTE{\class{param}{\tfreqTE_h}} \def\mcO{\mathcal{O}} \def\order#1#2{\mcO\left(#1^{#2}\right)} \def\orderh#1{\order{h}{#1}} \def\Bbseries#1#2{B^\star\left( \boldsymbol{#1},#2 \right)} \def\evalg#1#2#3#4{#3\mathopen{}#1#4#2\mathclose{}} \def\eval#1#2{\evalg{\left(}{\right)}{#1}{#2}} \)

Application of exponential fitting techniques to numerical methods for solving differential equations

 

Davy Hollevoet

 

Promotor: prof. dr. Marnix Van Daele

Vakgroep Toegepaste Wiskunde, Informatica en Statistiek

What's in a title?

Application of

exponential fitting⇠ modification of approach

techniques to

numerical methods⇠ approach to problem

for solving

differential equations⇠ problem

What's a differential equation, then?

E.g. relation between unknown function $y$ and its derivative $y'$

Breakdown of alcohol by liver

$$\cssId{de1}{y'} \cssId{de2}{= \alpha y}$$

change in alcohol concentration
alcohol concentration

What's a differential equation, then? (2)

Relation between unknown function $y$ and its derivatives $y', y'', y''', \dotsc$

$$F(t, y, y', y'', \dotsc, \udiff{y}{q})=0$$

A q-th order differential equation

Motion of a pendulum

$$ y'' + 2 \zeta \omega_0 y' + \omega_0^2 y = 0 $$

$\zeta$: damping

$\omega_0$: undamped frequency

⇒ Initial Value Problem

Differential equations: Boundary Value Problems

a b

Free hanging rope

$$ (y'')^2 - \mu^2 (y')^2 = \mu^2 $$

Subject to boundary conditions

$$ y(-1)=a, \quad y(1)=b$$

What's in a title? (2)

Application of

exponential fitting

techniques to

numerical methods

for solving

differential equations

Solving differential equations

Solving differential equations, numerically

Several families of numerical methods:

Comparing methods

How do the methods perform when $h \to 0$?

The order of a method

Global error

Local error

What's in a title? (3)

Application of

exponential fitting

techniques to

numerical methods

for solving

differential equations

Enter exponential fitting

Example: (EF)Euler

Classical Euler method

$$y_{n+1} = y_n + h f(t_n, y_n)$$

$FS=\left\{1, t\right\}$

Exponentially fitted Euler method

$$y_{n+1} = y_n + h \class{hilite}{\dfrac{e^{\tfreqah} - 1}{\tfreqah}} f(t_n, y_n)$$

$FS=\left\{1, e^{\tfreqa t}\right\}$

Example: (EF)Euler (2)

Application to the liver model

Classical Euler method - EF Euler method

 

  • Solution: $y(t)=e^{-2 t}$

    ⇒ Very accurate results with EFEuler if $\omega=-2$

Symmetric EF aka trigonometric fitting

Example: (EF)Euler (3)

Application to a problem with an oscillatory solution

Classical Euler method - EF Euler method

Chapter 2 - 3
Parameter selection for some EF methods

Parameter values

Numerov's method

$$y_{j-1} + a_0 y_j + y_{j+1}= h^2 \left( b_1 f_{j-1} + b_0 f_j + b_1 f_{j+1} \right)$$

Suitable for problems of the form $y''=f(t, y)$

$\left\{1,t,t^2,t^3,t^4,t^5\right\}$

$\left\{1,t,t^2,t^3, e^{\pm\omega t}\right\}$

$\left\{1,t, e^{\pm\omega t}, t e^{\pm\omega t}\right\}$

$\left\{e^{\pm\omega t}, t e^{\pm\omega t}, t^{2} e^{\pm\omega t}\right\}$

$e_j=h^6 c_0 \udiff{y}{6}(t_j) + \orderh{8}$

$e_j=h^6 c_1 \class{erroperator}{\left[ \udiff{y}{6} - \tfreqa^2 \udiff{y}{4} \right](t_j)} + \orderh{8}$

$e_j=h^6 c_2 \class{erroperator}{\left[ \udiff{y}{6} - 2 \tfreqa^2 \udiff{y}{4} + \tfreqa^4 \udiff{y}{2} \right](t_j)} + \orderh{8}$

$e_j=h^6 c_3 \class{erroperator}{\left[ \udiff{y}{6} - 3 \tfreqa^2 \udiff{y}{4} + 3 \tfreqa^4 \udiff{y}{2} - \tfreqa^6 y \right](t_j)} + \orderh{8}$

Numerov's method: determining parameter value(s)

$\left\{1,t,t^2,t^3, e^{\pm\omega t}\right\}$, 1 solution

$\left\{1,t, e^{\pm\omega t}, t e^{\pm\omega t}\right\}$, 2 solutions

$\left\{e^{\pm\omega t}, t e^{\pm\omega t}, t^{2} e^{\pm\omega t}\right\}$, 3 solutions

⇒ Select the root with the smallest modulus

Numerov methods: results

Classical Numerov method

EF Numerov methods

Usmani's methods

$$ y_{j-2} + a_1 y_{j-1} + a_0 y_j + a_1 y_{j+1} + y_{j+2} = h^4 \left[ \class{b2}{b_2} f_{j-2} + \class{b1}{b_1} f_{j-1} + b_0 f_j + \class{b1}{b_1} f_{j+1} + \class{b2}{b_2} f_{j+2} \right]$$

Suitable for problems of the form $\udiff{y}{4} + f(t) y = g(t)$

$M=10$ $M=8$ $M=6$
$\class{b2}{b_2}=0$ $\class{b2}{b_2}=\class{b1}{b_1}=0$
$\orderh{6}$ $\orderh{4}$ $\orderh{2}$

Exponentially fitted variants:

$$\{0^8, \pm\tfreqa^1\}$$ $$\{0^6, \pm\tfreqa^2\}$$ $$\{0^4, \pm\tfreqa^3\}$$ $$\{0^2, \pm\tfreqa^4\}$$ $$\{\pm\tfreqa^5\}$$
$$\{0^6, \pm\tfreqa^1\}$$ $$\{0^4, \pm\tfreqa^2\}$$ $$\{0^2, \pm\tfreqa^3\}$$ $$\{\pm\tfreqa^4\}$$
$$\{0^4, \pm\tfreqa^1\}$$ $$\{0^2, \pm\tfreqa^2\}$$ $$\{\pm\tfreqa^3\}$$

Usmani's methods: results

Classical Usmani method

EF Usmani methods

Chapter 4
Deferred correction with EFMIRK methods

Deferred correction?

Deferred correction + exponential fitting = ?

The cure? A forest!

\( \def\btree#1#2{\class{btree}{\class{placeholder}{\cssId{#1-#2}{.}}}} \def\treef#1{{\bf #1}} \def\ta{\treef{a}} \)

Option 1: a global approach

Example: $\phi$: Trapezoidal rule + $\psi$: Radau I $(s=2)$

$\tau$ $\phi\class{efc}{[\tfreqa]}$ $-\psi\class{efc}{[\tfreqb]}$
0 0 $\dfrac{1}{12}\tfreqa^2$ 0 0 $\dfrac{1}{12}\tfreqa^2$
0 0 $\dfrac{1}{12}\tfreqa^2$ 0 0 $\dfrac{1}{9}\tfreqa^2-\dfrac{1}{36}\tfreqb^2$
, $-\dfrac{1}{2}$ 0 $-\dfrac{1}{2}$ 0
,, $-1, -1$ $-\dfrac{10}{9}, -1$

A global approach: results

Deferred correction

Deferred correction + exponential fitting

Option 2: a local approach

Example: $\phi$: Trapezoidal rule + $\psi$: Radau I $(s=2)$

$\tau$ $\phi{[\tfreqa]}$ $-\psi{[\tfreqb]}$
0 0 $\dfrac{1}{12}\tfreqa^2$ 0 0 0 0
0 0 0 0 $\dfrac{1}{36}\tfreqa^2$
, $-\dfrac{1}{2}$ 0 0
,, $-\dfrac{1}{9}, -\dfrac{1}{3}$

A local approach: results

Deferred correction

Deferred correction + exponential fitting

Chapter 5
Two families of EF methods and their stability functions

Stability of a Runge-Kutta method

Stability functions: Runge-Kutta methods

Stability functions: Obreshkoff methods

Construction of specific Obreshkoff methods

Conclusion

Application of

exponential fitting

techniques to

numerical methods

for solving

differential equations

~

/

#